2026/2/21 17:24:00
网站建设
项目流程
网站推广东莞,福州网站建设专业定制,响应式网站 图片尺寸奇数,绵阳seo通过i_α和i_β估计反电势e_α和e_β一、龙博格观测器简介二、状态变量推导三、实现过程四、仿真一、龙博格观测器简介
龙博格观测器#xff0c;一种典型的全维状态观测器#xff0c;依赖系统的输出状态与搭建的状态误差收敛状态对状态进行观测 假设一个系统为#xff1a;…通过i_α和i_β估计反电势e_α和e_β一、龙博格观测器简介二、状态变量推导三、实现过程四、仿真一、龙博格观测器简介龙博格观测器一种典型的全维状态观测器依赖系统的输出状态与搭建的状态误差收敛状态对状态进行观测假设一个系统为{ x ˙ A x B u y C x \left\{ \begin{aligned} \dot{x} A x B u \\ y C x \end{aligned} \right.{x˙yAxBuCx根据框图格式构建观测器如下K为增益{ x ^ ˙ A x ^ B u K ( y − y ^ ) y ^ C x ^ \left\{ \begin{aligned} \dot{\hat{x}} A \hat{x} B uK(y-\hat{y}) \\ \hat{y} C \hat{x} \end{aligned} \right.{x^˙y^Ax^BuK(y−y^)Cx^进一步即状态x的观测值为x ^ ˙ ( A − K C ) x ^ B u K y 式 1 \ \dot{\hat{x}} (A-KC) \hat{x} B uKy \ 式1x^˙(A−KC)x^BuKy式1进一步离散化后状态x为x ^ ( k 1 ) [ ( A − K C ) x ^ ( k ) B u ( k ) K y ( k ) ] ∗ T s x ^ ( k ) \ {\hat{x}(k1)}[ (A-KC) \hat{x}(k) B u(k)Ky (k) ]*T_s\hat{x}(k)\x^(k1)[(A−KC)x^(k)Bu(k)Ky(k)]∗Tsx^(k)在PMSM控制中我们通过对输出状态i a \ i_aia和i β \ i_βiβ的追踪实现对反电动势e a \ e_aea与e a \ e_aea的观测进而通过PLL可以提取PMSM的转子信息二、状态变量推导表贴式PMSM两相静止坐标系下电压方程{ u α R s i α L s d i α d t e α u β R s i β L s d i β d t e β \left\{ \begin{aligned} u_{\alpha} R_s i_{\alpha} L_s \frac{di_{\alpha}}{dt} e_{\alpha} \\ u_{\beta} R_s i_{\beta} L_s \frac{di_{\beta}}{dt} e_{\beta} \end{aligned} \right.⎩⎨⎧uαuβRsiαLsdtdiαeαRsiβLsdtdiβeβ其中反电动势为{ e α − ω r ψ f sin ( θ r ) e β ω r ψ f cos ( θ r ) \left\{ \begin{aligned} e_{\alpha} -\omega_{r} \psi_{f} \sin \left( \theta_{r} \right) \\ e_{\beta} \omega_{r} \psi_{f} \cos \left( \theta_{r} \right) \end{aligned} \right.{eα−ωrψfsin(θr)eβωrψfcos(θr)其中ω r \ \omega_{r}ωr为电角度、θ r \ \theta_{r}θr为转子位置、ψ f \ \psi_{f}ψf为永磁体磁链由假设近似ω r ˙ 0 \ \dot{ \omega_{r} }0ωr˙0d θ r d t ω r \ \frac{d\theta_r}{dt} \omega_rdtdθrωr从电压方程解出电流导数和反电势导数d i α d t 1 L s ( u α − R s i α − e α ) \frac{di_{\alpha}}{dt} \frac{1}{L_s}(u_{\alpha} - R_s i_{\alpha} - e_{\alpha})dtdiαLs1(uα−Rsiα−eα)d i β d t 1 L s ( u β − R s i β − e β ) \frac{di_{\beta}}{dt} \frac{1}{L_s}(u_{\beta} - R_s i_{\beta} - e_{\beta})dtdiβLs1(uβ−Rsiβ−eβ)d e α d t d d t ( − ω r ψ f sin ( θ r ) ) − ω r d d t ( ψ f sin ( θ r ) ) ≈ − ω r e β \frac{de_{\alpha}}{dt} \frac{d}{dt} \Bigl(-\omega_{r} \psi_{f} \sin(\theta_{r}) \Bigr) -\omega_{r} \frac{d}{dt} \Bigl( \psi_{f} \sin(\theta_{r}) \Bigr) \approx -\omega_{r} e_{\beta}dtdeαdtd(−ωrψfsin(θr))−ωrdtd(ψfsin(θr))≈−ωreβd e β d t d d t ( ω r ψ f cos ( θ r ) ) ω r d d t ( ψ f cos ( θ r ) ) ≈ ω r e α \frac{de_{\beta}}{dt} \frac{d}{dt} \Bigl( \omega_{r} \psi_{f} \cos(\theta_{r}) \Bigr) \omega_{r} \frac{d}{dt} \Bigl( \psi_{f} \cos(\theta_{r}) \Bigr) \approx \omega_{r} e_{\alpha}dtdeβdtd(ωrψfcos(θr))ωrdtd(ψfcos(θr))≈ωreα故而状态空间方程构建如下状态空间方程为d d t [ i α i β e α e β ] [ − R s L s 0 − 1 L s 0 0 − R s L s 0 − 1 L s 0 0 0 − ω r 0 0 ω r 0 ] [ i α i β e α e β ] [ 1 L s 0 0 1 L s 0 0 0 0 ] [ u α u β 0 0 ] \frac{d}{d t}\left[\begin{array}{c} i_{\alpha} \\ i_{\beta} \\ e_{\alpha} \\ e_{\beta} \end{array}\right] \left[\begin{array}{cccc} -\frac{R_{s}}{L_{s}} 0 -\frac{1}{L_{s}} 0 \\ 0 -\frac{R_{s}}{L_{s}} 0 -\frac{1}{L_{s}} \\ 0 0 0 -\omega_{r} \\ 0 0 \omega_{r} 0 \end{array}\right] \left[\begin{array}{c} i_{\alpha} \\ i_{\beta} \\ e_{\alpha} \\ e_{\beta} \end{array}\right] \left[\begin{array}{cc} \frac{1}{L_{s}} 0 \\ 0 \frac{1}{L_{s}} \\ 0 0 \\ 0 0 \end{array}\right] \left[\begin{array}{c} u_{\alpha} \\ u_{\beta} \\ 0 \\ 0 \end{array}\right]dtdiαiβeαeβ−LsRs0000−LsRs00−Ls100ωr0−Ls1−ωr0iαiβeαeβLs10000Ls100uαuβ00输出方程为[ i α i β ] [ 1 0 0 0 0 1 0 0 ] [ i α i β e α e β ] \left[\begin{array}{l} i_{\alpha} \\ i_{\beta} \end{array}\right] \left[\begin{array}{llll} 1 0 0 0 \\ 0 1 0 0 \end{array}\right] \left[\begin{array}{l} i_{\alpha} \\ i_{\beta} \\ e_{\alpha} \\ e_{\beta} \end{array}\right][iαiβ][10010000]iαiβeαeβ三、实现过程仿照一、中对上面给出的状态方程设计Lunberger观测器如下d d t [ i ^ α i ^ β e ^ α e ^ β ] A [ i ^ α i ^ β e ^ α e ^ β ] B [ u α u β 0 0 ] K ( [ i α i β 0 0 ] − [ i ^ α i ^ β 0 0 ] ) ( 式 2 ) \frac{d}{d t}\left[\begin{array}{c} \hat{i}_{\alpha} \\ \hat{i}_{\beta} \\ \hat{e}_{\alpha} \\ \hat{e}_{\beta} \end{array}\right] \mathbf{A}\left[\begin{array}{c} \hat{i}_{\alpha} \\ \hat{i}_{\beta} \\ \hat{e}_{\alpha} \\ \hat{e}_{\beta} \end{array}\right] \mathbf{B}\left[\begin{array}{c} u_{\alpha} \\ u_{\beta} \\ 0 \\ 0 \end{array}\right] \mathbf{K}\left( \left[\begin{array}{c} i_{\alpha} \\ i_{\beta}\\0 \\0 \end{array}\right] - \left[\begin{array}{c} \hat{i}_{\alpha} \\ \hat{i}_{\beta} \\0 \\0 \end{array}\right] \right)(式2)dtdi^αi^βe^αe^βAi^αi^βe^αe^βBuαuβ00Kiαiβ00−i^αi^β00(式2)其中系数矩阵A、B、C为A [ − R s L s 0 − 1 L s 0 0 − R s L s 0 − 1 L s 0 0 0 − ω r 0 0 ω r 0 ] \mathbf{A}\left[\begin{array}{cccc} -\frac{R_{s}}{L_{s}} 0 -\frac{1}{L_{s}} 0 \\ 0 -\frac{R_{s}}{L_{s}} 0 -\frac{1}{L_{s}} \\ 0 0 0 -\omega_{r} \\ 0 0 \omega_{r} 0 \end{array}\right]A−LsRs0000−LsRs00−Ls100ωr0−Ls1−ωr0B [ 1 L s 0 0 1 L s 0 0 0 0 ] , C [ 1 0 0 0 0 1 0 0 ] \mathbf{B}\left[\begin{array}{cc} \frac{1}{L_{s}} 0 \\ 0 \frac{1}{L_{s}} \\ 0 0 \\ 0 0 \end{array}\right],\quad \mathbf{C}\left[\begin{array}{cccc} 1 0 0 0 \\ 0 1 0 0 \end{array}\right]BLs10000Ls100,C[10010000]增益矩阵为K [ K 1 0 0 0 0 K 1 0 0 K 2 0 0 0 0 K 2 0 0 ] \mathbf{K} \left[ \begin{array}{cc} K_1 0 0 0\\ 0 K_1 0 0\\ K_2 0 0 0\\ 0 K_2 0 0\\ \end{array} \right]KK10K200K10K200000000其中K1是对电流的观测增益K2是对反电动势的观测增益状态变量输入矩阵输出矩阵分别为x [ i α i β e α e α ] , u [ u α u β 0 0 ] , y [ i α i β 0 0 ] \mathbf{x}\left[\begin{array}{c} i_{\alpha} \\ i_{\beta} \\ e_{\alpha} \\ e_{\alpha} \end{array}\right] ,\mathbf{u}\left[\begin{array}{c} u_{\alpha} \\ u_{\beta} \\ 0 \\ 0 \end{array}\right] ,\mathbf{y}\left[\begin{array}{c} i_{\alpha} \\ i_{\beta} \\ 0 \\ 0 \end{array}\right]xiαiβeαeα,uuαuβ00,yiαiβ00对(式2)离散化后得到反电动势的龙博格观测器为i ^ α ( k 1 ) i ^ α ( k ) T [ − R s L s i ^ α ( k ) − 1 L s e ^ α ( k ) 1 L s u α ( k ) K 1 ( i α ( k ) − i ^ α ( k ) ) ] i ^ β ( k 1 ) i ^ β ( k ) T [ − R s L s i ^ β ( k ) − 1 L s e ^ β ( k ) 1 L s u β ( k ) K 1 ( i β ( k ) − i ^ β ( k ) ) ] e ^ α ( k 1 ) e ^ α ( k ) T [ − ω ^ e e ^ β ( k ) K 2 ( i α ( k ) − i ^ α ( k ) ) ] e ^ β ( k 1 ) e ^ β ( k ) T [ ω ^ e e ^ α ( k ) K 2 ( i β ( k ) − i ^ β ( k ) ) ] \begin{aligned} \hat{i}_{\alpha}(k1) \hat{i}_{\alpha}(k) T\bigg[-\frac{R_s}{L_s}\hat{i}_{\alpha}(k) - \frac{1}{L_s}\hat{e}_{\alpha}(k) \frac{1}{L_s}u_{\alpha}(k) K_1\big(i_{\alpha}(k) - \hat{i}_{\alpha}(k)\big)\bigg] \\ \hat{i}_{\beta}(k1) \hat{i}_{\beta}(k) T\bigg[-\frac{R_s}{L_s}\hat{i}_{\beta}(k) - \frac{1}{L_s}\hat{e}_{\beta}(k) \frac{1}{L_s}u_{\beta}(k) K_1\big(i_{\beta}(k) - \hat{i}_{\beta}(k)\big)\bigg] \\ \hat{e}_{\alpha}(k1) \hat{e}_{\alpha}(k) T\bigg[-\hat{\omega}_e \hat{e}_{\beta}(k) K_2\big(i_{\alpha}(k) - \hat{i}_{\alpha}(k)\big)\bigg] \\ \hat{e}_{\beta}(k1) \hat{e}_{\beta}(k) T\bigg[\,\hat{\omega}_e \hat{e}_{\alpha}(k) K_2\big(i_{\beta}(k) - \hat{i}_{\beta}(k)\big)\bigg] \end{aligned}i^α(k1)i^β(k1)e^α(k1)e^β(k1)i^α(k)T[−LsRsi^α(k)−Ls1e^α(k)Ls1uα(k)K1(iα(k)−i^α(k))]i^β(k)T[−LsRsi^β(k)−Ls1e^β(k)Ls1uβ(k)K1(iβ(k)−i^β(k))]e^α(k)T[−ω^ee^β(k)K2(iα(k)−i^α(k))]e^β(k)T[ω^ee^α(k)K2(iβ(k)−i^β(k))]T为采样时间四、仿真simulink搭建仿真验证如下选取合适增益后运行用示波器查看i_α和hat(i_α)波形发现观测收敛如下反电动势为