网站推广东莞福州网站建设专业定制
2026/2/21 17:24:00 网站建设 项目流程
网站推广东莞,福州网站建设专业定制,响应式网站 图片尺寸奇数,绵阳seo通过i_α和i_β估计反电势e_α和e_β一、龙博格观测器简介二、状态变量推导三、实现过程四、仿真一、龙博格观测器简介 龙博格观测器#xff0c;一种典型的全维状态观测器#xff0c;依赖系统的输出状态与搭建的状态误差收敛状态对状态进行观测 假设一个系统为#xff1a;…通过i_α和i_β估计反电势e_α和e_β一、龙博格观测器简介二、状态变量推导三、实现过程四、仿真一、龙博格观测器简介龙博格观测器一种典型的全维状态观测器依赖系统的输出状态与搭建的状态误差收敛状态对状态进行观测假设一个系统为{ x ˙ A x B u y C x \left\{ \begin{aligned} \dot{x} A x B u \\ y C x \end{aligned} \right.{x˙y​AxBuCx​根据框图格式构建观测器如下K为增益{ x ^ ˙ A x ^ B u K ( y − y ^ ) y ^ C x ^ \left\{ \begin{aligned} \dot{\hat{x}} A \hat{x} B uK(y-\hat{y}) \\ \hat{y} C \hat{x} \end{aligned} \right.{x^˙y^​​Ax^BuK(y−y^​)Cx^​进一步即状态x的观测值为x ^ ˙ ( A − K C ) x ^ B u K y 式 1 \ \dot{\hat{x}} (A-KC) \hat{x} B uKy \ 式1x^˙(A−KC)x^BuKy式1进一步离散化后状态x为x ^ ( k 1 ) [ ( A − K C ) x ^ ( k ) B u ( k ) K y ( k ) ] ∗ T s x ^ ( k ) \ {\hat{x}(k1)}[ (A-KC) \hat{x}(k) B u(k)Ky (k) ]*T_s\hat{x}(k)\x^(k1)[(A−KC)x^(k)Bu(k)Ky(k)]∗Ts​x^(k)在PMSM控制中我们通过对输出状态i a \ i_aia​和i β \ i_βiβ​的追踪实现对反电动势e a \ e_aea​与e a \ e_aea​的观测进而通过PLL可以提取PMSM的转子信息二、状态变量推导表贴式PMSM两相静止坐标系下电压方程{ u α R s i α L s d i α d t e α u β R s i β L s d i β d t e β \left\{ \begin{aligned} u_{\alpha} R_s i_{\alpha} L_s \frac{di_{\alpha}}{dt} e_{\alpha} \\ u_{\beta} R_s i_{\beta} L_s \frac{di_{\beta}}{dt} e_{\beta} \end{aligned} \right.⎩⎨⎧​uα​uβ​​Rs​iα​Ls​dtdiα​​eα​Rs​iβ​Ls​dtdiβ​​eβ​​其中反电动势为{ e α − ω r ψ f sin ⁡ ( θ r ) e β ω r ψ f cos ⁡ ( θ r ) \left\{ \begin{aligned} e_{\alpha} -\omega_{r} \psi_{f} \sin \left( \theta_{r} \right) \\ e_{\beta} \omega_{r} \psi_{f} \cos \left( \theta_{r} \right) \end{aligned} \right.{eα​−ωr​ψf​sin(θr​)eβ​ωr​ψf​cos(θr​)​其中ω r \ \omega_{r}ωr​为电角度、θ r \ \theta_{r}θr​为转子位置、ψ f \ \psi_{f}ψf​为永磁体磁链由假设近似ω r ˙ 0 \ \dot{ \omega_{r} }0ωr​˙​0d θ r d t ω r \ \frac{d\theta_r}{dt} \omega_rdtdθr​​ωr​从电压方程解出电流导数和反电势导数d i α d t 1 L s ( u α − R s i α − e α ) \frac{di_{\alpha}}{dt} \frac{1}{L_s}(u_{\alpha} - R_s i_{\alpha} - e_{\alpha})dtdiα​​Ls​1​(uα​−Rs​iα​−eα​)d i β d t 1 L s ( u β − R s i β − e β ) \frac{di_{\beta}}{dt} \frac{1}{L_s}(u_{\beta} - R_s i_{\beta} - e_{\beta})dtdiβ​​Ls​1​(uβ​−Rs​iβ​−eβ​)d e α d t d d t ( − ω r ψ f sin ⁡ ( θ r ) ) − ω r d d t ( ψ f sin ⁡ ( θ r ) ) ≈ − ω r e β \frac{de_{\alpha}}{dt} \frac{d}{dt} \Bigl(-\omega_{r} \psi_{f} \sin(\theta_{r}) \Bigr) -\omega_{r} \frac{d}{dt} \Bigl( \psi_{f} \sin(\theta_{r}) \Bigr) \approx -\omega_{r} e_{\beta}dtdeα​​dtd​(−ωr​ψf​sin(θr​))−ωr​dtd​(ψf​sin(θr​))≈−ωr​eβ​d e β d t d d t ( ω r ψ f cos ⁡ ( θ r ) ) ω r d d t ( ψ f cos ⁡ ( θ r ) ) ≈ ω r e α \frac{de_{\beta}}{dt} \frac{d}{dt} \Bigl( \omega_{r} \psi_{f} \cos(\theta_{r}) \Bigr) \omega_{r} \frac{d}{dt} \Bigl( \psi_{f} \cos(\theta_{r}) \Bigr) \approx \omega_{r} e_{\alpha}dtdeβ​​dtd​(ωr​ψf​cos(θr​))ωr​dtd​(ψf​cos(θr​))≈ωr​eα​故而状态空间方程构建如下状态空间方程为d d t [ i α i β e α e β ] [ − R s L s 0 − 1 L s 0 0 − R s L s 0 − 1 L s 0 0 0 − ω r 0 0 ω r 0 ] [ i α i β e α e β ] [ 1 L s 0 0 1 L s 0 0 0 0 ] [ u α u β 0 0 ] \frac{d}{d t}\left[\begin{array}{c} i_{\alpha} \\ i_{\beta} \\ e_{\alpha} \\ e_{\beta} \end{array}\right] \left[\begin{array}{cccc} -\frac{R_{s}}{L_{s}} 0 -\frac{1}{L_{s}} 0 \\ 0 -\frac{R_{s}}{L_{s}} 0 -\frac{1}{L_{s}} \\ 0 0 0 -\omega_{r} \\ 0 0 \omega_{r} 0 \end{array}\right] \left[\begin{array}{c} i_{\alpha} \\ i_{\beta} \\ e_{\alpha} \\ e_{\beta} \end{array}\right] \left[\begin{array}{cc} \frac{1}{L_{s}} 0 \\ 0 \frac{1}{L_{s}} \\ 0 0 \\ 0 0 \end{array}\right] \left[\begin{array}{c} u_{\alpha} \\ u_{\beta} \\ 0 \\ 0 \end{array}\right]dtd​​iα​iβ​eα​eβ​​​​−Ls​Rs​​000​0−Ls​Rs​​00​−Ls​1​00ωr​​0−Ls​1​−ωr​0​​​iα​iβ​eα​eβ​​​​Ls​1​000​0Ls​1​00​​​uα​uβ​00​​输出方程为[ i α i β ] [ 1 0 0 0 0 1 0 0 ] [ i α i β e α e β ] \left[\begin{array}{l} i_{\alpha} \\ i_{\beta} \end{array}\right] \left[\begin{array}{llll} 1 0 0 0 \\ 0 1 0 0 \end{array}\right] \left[\begin{array}{l} i_{\alpha} \\ i_{\beta} \\ e_{\alpha} \\ e_{\beta} \end{array}\right][iα​iβ​​][10​01​00​00​]​iα​iβ​eα​eβ​​​三、实现过程仿照一、中对上面给出的状态方程设计Lunberger观测器如下d d t [ i ^ α i ^ β e ^ α e ^ β ] A [ i ^ α i ^ β e ^ α e ^ β ] B [ u α u β 0 0 ] K ( [ i α i β 0 0 ] − [ i ^ α i ^ β 0 0 ] ) ( 式 2 ) \frac{d}{d t}\left[\begin{array}{c} \hat{i}_{\alpha} \\ \hat{i}_{\beta} \\ \hat{e}_{\alpha} \\ \hat{e}_{\beta} \end{array}\right] \mathbf{A}\left[\begin{array}{c} \hat{i}_{\alpha} \\ \hat{i}_{\beta} \\ \hat{e}_{\alpha} \\ \hat{e}_{\beta} \end{array}\right] \mathbf{B}\left[\begin{array}{c} u_{\alpha} \\ u_{\beta} \\ 0 \\ 0 \end{array}\right] \mathbf{K}\left( \left[\begin{array}{c} i_{\alpha} \\ i_{\beta}\\0 \\0 \end{array}\right] - \left[\begin{array}{c} \hat{i}_{\alpha} \\ \hat{i}_{\beta} \\0 \\0 \end{array}\right] \right)(式2)dtd​​i^α​i^β​e^α​e^β​​​A​i^α​i^β​e^α​e^β​​​B​uα​uβ​00​​K​​iα​iβ​00​​−​i^α​i^β​00​​​(式2)其中系数矩阵A、B、C为A [ − R s L s 0 − 1 L s 0 0 − R s L s 0 − 1 L s 0 0 0 − ω r 0 0 ω r 0 ] \mathbf{A}\left[\begin{array}{cccc} -\frac{R_{s}}{L_{s}} 0 -\frac{1}{L_{s}} 0 \\ 0 -\frac{R_{s}}{L_{s}} 0 -\frac{1}{L_{s}} \\ 0 0 0 -\omega_{r} \\ 0 0 \omega_{r} 0 \end{array}\right]A​−Ls​Rs​​000​0−Ls​Rs​​00​−Ls​1​00ωr​​0−Ls​1​−ωr​0​​B [ 1 L s 0 0 1 L s 0 0 0 0 ] , C [ 1 0 0 0 0 1 0 0 ] \mathbf{B}\left[\begin{array}{cc} \frac{1}{L_{s}} 0 \\ 0 \frac{1}{L_{s}} \\ 0 0 \\ 0 0 \end{array}\right],\quad \mathbf{C}\left[\begin{array}{cccc} 1 0 0 0 \\ 0 1 0 0 \end{array}\right]B​Ls​1​000​0Ls​1​00​​,C[10​01​00​00​]增益矩阵为K [ K 1 0 0 0 0 K 1 0 0 K 2 0 0 0 0 K 2 0 0 ] \mathbf{K} \left[ \begin{array}{cc} K_1 0 0 0\\ 0 K_1 0 0\\ K_2 0 0 0\\ 0 K_2 0 0\\ \end{array} \right]K​K1​0K2​0​0K1​0K2​​0000​0000​​其中K1是对电流的观测增益K2是对反电动势的观测增益状态变量输入矩阵输出矩阵分别为x [ i α i β e α e α ] , u [ u α u β 0 0 ] , y [ i α i β 0 0 ] \mathbf{x}\left[\begin{array}{c} i_{\alpha} \\ i_{\beta} \\ e_{\alpha} \\ e_{\alpha} \end{array}\right] ,\mathbf{u}\left[\begin{array}{c} u_{\alpha} \\ u_{\beta} \\ 0 \\ 0 \end{array}\right] ,\mathbf{y}\left[\begin{array}{c} i_{\alpha} \\ i_{\beta} \\ 0 \\ 0 \end{array}\right]x​iα​iβ​eα​eα​​​,u​uα​uβ​00​​,y​iα​iβ​00​​对(式2)离散化后得到反电动势的龙博格观测器为i ^ α ( k 1 ) i ^ α ( k ) T [ − R s L s i ^ α ( k ) − 1 L s e ^ α ( k ) 1 L s u α ( k ) K 1 ( i α ( k ) − i ^ α ( k ) ) ] i ^ β ( k 1 ) i ^ β ( k ) T [ − R s L s i ^ β ( k ) − 1 L s e ^ β ( k ) 1 L s u β ( k ) K 1 ( i β ( k ) − i ^ β ( k ) ) ] e ^ α ( k 1 ) e ^ α ( k ) T [ − ω ^ e e ^ β ( k ) K 2 ( i α ( k ) − i ^ α ( k ) ) ] e ^ β ( k 1 ) e ^ β ( k ) T [ ω ^ e e ^ α ( k ) K 2 ( i β ( k ) − i ^ β ( k ) ) ] \begin{aligned} \hat{i}_{\alpha}(k1) \hat{i}_{\alpha}(k) T\bigg[-\frac{R_s}{L_s}\hat{i}_{\alpha}(k) - \frac{1}{L_s}\hat{e}_{\alpha}(k) \frac{1}{L_s}u_{\alpha}(k) K_1\big(i_{\alpha}(k) - \hat{i}_{\alpha}(k)\big)\bigg] \\ \hat{i}_{\beta}(k1) \hat{i}_{\beta}(k) T\bigg[-\frac{R_s}{L_s}\hat{i}_{\beta}(k) - \frac{1}{L_s}\hat{e}_{\beta}(k) \frac{1}{L_s}u_{\beta}(k) K_1\big(i_{\beta}(k) - \hat{i}_{\beta}(k)\big)\bigg] \\ \hat{e}_{\alpha}(k1) \hat{e}_{\alpha}(k) T\bigg[-\hat{\omega}_e \hat{e}_{\beta}(k) K_2\big(i_{\alpha}(k) - \hat{i}_{\alpha}(k)\big)\bigg] \\ \hat{e}_{\beta}(k1) \hat{e}_{\beta}(k) T\bigg[\,\hat{\omega}_e \hat{e}_{\alpha}(k) K_2\big(i_{\beta}(k) - \hat{i}_{\beta}(k)\big)\bigg] \end{aligned}i^α​(k1)i^β​(k1)e^α​(k1)e^β​(k1)​i^α​(k)T[−Ls​Rs​​i^α​(k)−Ls​1​e^α​(k)Ls​1​uα​(k)K1​(iα​(k)−i^α​(k))]i^β​(k)T[−Ls​Rs​​i^β​(k)−Ls​1​e^β​(k)Ls​1​uβ​(k)K1​(iβ​(k)−i^β​(k))]e^α​(k)T[−ω^e​e^β​(k)K2​(iα​(k)−i^α​(k))]e^β​(k)T[ω^e​e^α​(k)K2​(iβ​(k)−i^β​(k))]​T为采样时间四、仿真simulink搭建仿真验证如下选取合适增益后运行用示波器查看i_α和hat(i_α)波形发现观测收敛如下反电动势为

需要专业的网站建设服务?

联系我们获取免费的网站建设咨询和方案报价,让我们帮助您实现业务目标

立即咨询