免费素材网站下载做网站安全的公司有哪些
2026/2/14 22:36:58 网站建设 项目流程
免费素材网站下载,做网站安全的公司有哪些,深圳工业设计公司排名榜,琚宾设计公司官网根据NSGA-II改编的局部寻优算法。 加入了ZDT和DTLZ系列测试函数#xff0c;IGD定值退出也加入到里面了。 下面是ZDT1和DTLZ4函数测试的部分图片。最近在算法研究的道路上#xff0c;我对NSGA-II算法进行了一番改造#xff0c;开发出了一个独具特色的局部寻优算法。今天就来和…根据NSGA-II改编的局部寻优算法。 加入了ZDT和DTLZ系列测试函数IGD定值退出也加入到里面了。 下面是ZDT1和DTLZ4函数测试的部分图片。最近在算法研究的道路上我对NSGA-II算法进行了一番改造开发出了一个独具特色的局部寻优算法。今天就来和大家唠唠这其中的门道。NSGA-II的改编思路NSGA-IINon - dominated Sorting Genetic Algorithm II本身就是多目标优化领域的经典算法它在处理多目标问题时有着高效的非支配排序和拥挤度计算机制。但在实际应用中有时候我们希望算法能够更聚焦于局部区域进行精细寻优。所以我在NSGA-II的基础上对其选择、交叉和变异操作进行了调整。让算法在迭代过程中以一定概率更关注当前种群中较优解周围的局部区域而不是像原始算法那样较为均匀地在整个搜索空间中探索。比如在选择操作上原始NSGA-II是基于非支配排序和拥挤度选择个体进入下一代。而在我的局部寻优算法中会额外引入一个局部性判断机制。对于当前种群中的每个个体计算它与种群中最优个体的某种距离度量比如欧氏距离如果距离小于某个阈值那么这些个体在选择时会有更高的优先级进入下一代以此来促使算法在最优解附近进行局部探索。# 简单示例代码展示局部性判断机制在选择操作中的应用 import numpy as np # 假设种群个体的表示形式为二维数组每一行代表一个个体每一列代表一个维度 population np.array([[1.2, 3.5], [2.1, 4.7], [0.8, 2.9], [1.9, 3.1]]) optimal_individual np.array([1.0, 3.0]) threshold 0.5 # 计算每个个体与最优个体的欧氏距离 distances np.sqrt(np.sum((population - optimal_individual) ** 2, axis 1)) # 根据距离筛选个体 local_individuals population[distances threshold] print(local_individuals)在这段代码中我们首先定义了一个简单的种群population以及假设的最优个体optimalindividual和距离阈值threshold。通过计算每个个体与最优个体的欧氏距离distances我们筛选出了距离小于阈值的局部个体localindividuals这部分个体在后续的选择操作中就会有更高的机会进入下一代实现局部寻优的倾向。引入ZDT和DTLZ系列测试函数为了更好地评估这个改编后的局部寻优算法的性能我加入了ZDT和DTLZ系列测试函数。这些函数在多目标优化领域是非常经典的测试基准。以ZDT1函数为例它的定义如下\[\begin{align*}f1(x) x1\\f2(x) g(x) \cdot (1 - \sqrt{\frac{f1(x)}{g(x)}})\\g(x) 1 9 \cdot \frac{\sum{i 2}^{n}xi}{n - 1}\end{align*}\]其中 \(x \in [0, 1]^n\) \(n\) 是决策变量的维度。下面是用Python实现ZDT1函数的简单代码import numpy as np def zdt1(x): n len(x) f1 x[0] g 1 9 * np.sum(x[1:]) / (n - 1) f2 g * (1 - np.sqrt(f1 / g)) return np.array([f1, f2])这个函数接受一个一维数组x作为输入代表决策变量的值。通过计算f1和f2返回两个目标函数的值。DTLZ4函数相对来说稍微复杂一些它的形式如下以双目标三维决策变量为例\[\begin{align*}f1(x) \prod{i 1}^{m - 1}xi \cdot g(x) \cdot \cos(\frac{x{m - 1}\pi}{2})\\f2(x) g(x) \cdot \sin(\frac{x{m - 1}\pi}{2})\\g(x) 1 10(m - 1) \sum{i m - 1}^{n}(xi^2 - 10 \cos(4 \pi x_i))\end{align*}\]import numpy as np def dtlz4(x): n len(x) m 2 # 目标数 g 1 10 * (m - 1) for i in range(m - 1, n): g x[i] ** 2 - 10 * np.cos(4 * np.pi * x[i]) f1 np.prod(x[:m - 1]) * g * np.cos(x[m - 1] * np.pi / 2) f2 g * np.sin(x[m - 1] * np.pi / 2) return np.array([f1, f2])通过使用这些测试函数我们可以直观地观察到算法在不同复杂程度的多目标问题上的表现比如算法是否能够找到均匀分布且逼近真实Pareto前沿的解集。IGD定值退出机制在算法运行过程中我还加入了IGDInverted Generational Distance定值退出机制。IGD是一种用于衡量多目标优化算法得到的解集与真实Pareto前沿之间距离的指标。简单来说它计算得到的解集中每个点到真实Pareto前沿的最小距离的平均值。当算法运行到一定阶段如果IGD的值小于我们预先设定的某个定值这意味着算法得到的解集已经足够接近真实Pareto前沿继续运行下去可能不会带来显著的提升此时就可以终止算法节省计算资源。以下是一个简单的IGD计算的概念性代码假设已知真实Pareto前沿trueparetofront和算法得到的解集solution_setimport numpy as np def calculate_igd(solution_set, true_pareto_front): igd_sum 0 for point in solution_set: min_dist np.min(np.sqrt(np.sum((true_pareto_front - point) ** 2, axis 1))) igd_sum min_dist igd igd_sum / len(solution_set) return igd # 假设已经有了真实Pareto前沿和算法得到的解集 true_pareto_front np.array([[0.1, 0.9], [0.2, 0.8], [0.3, 0.7]]) solution_set np.array([[0.15, 0.85], [0.25, 0.75]]) igd_value calculate_igd(solution_set, true_pareto_front) print(igd_value)在实际应用中我们会在算法的每次迭代后计算IGD值并与预设的定值进行比较。如果igd_value小于定值就终止算法。最后附上ZDT1和DTLZ4函数测试的部分图片这里由于无法直接展示图片大家可以想象一下在ZDT1函数测试图片中Pareto前沿呈现出一条平滑的曲线算法得到的解集点在曲线上分布越靠近真实前沿说明算法性能越好而DTLZ4函数测试图片中由于其函数特性Pareto前沿可能更为复杂算法解集点的分布情况则反映了算法在处理复杂多目标问题时的能力。通过对NSGA-II的改编引入经典测试函数以及IGD定值退出机制这个局部寻优算法在多目标优化问题上展现出了独特的优势和潜力。希望今天的分享能给大家在算法研究和优化方面带来一些启发。

需要专业的网站建设服务?

联系我们获取免费的网站建设咨询和方案报价,让我们帮助您实现业务目标

立即咨询